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Abstract--The temperature profile along a cylindrical rod or tube as it cools has been obtained by numerical 
solution of the second-order time-dependent partial differential equation for heat conduction. The surface 
temperature is calculated for given temperature dependent values of the heat capacity, hemispherical total 
emissivity, thermal expansion and thermal conductivity and, by adjusting the thermal conductivity, is fitted 
to experimental temperature profiles obtained from preliminary measurements on a cooling cylindrical 
tungsten rod. The surface temperature of the rod is quite sensitive to the thermal conductivity but the 

accuracy of the predicted thermal conductivity cannot be assessed without further experimentation. 

1. INTRODUCTION 

An analytical method is described for determining the 
thermal conductivity of a cylindrical metal rod, or 
tube, at high temperatures from subsecond measure- 
ments of its time dependent surface temperature pro- 
file as the cylinder is either heated or cooled. The 
use of high speed measurement techniques reduces 
problems of sample degradation that arise in steady 
state methods at these temperatures. The method 
involves the matching of the experimental profiles to 
those calculated from the heat flow equation with a 
specific form for the: thermal conductivity x(T) .  If this 
is to be a viable method, (a) the surface temperature 
must be sensitive to this property and (b) it must be 
demonstrated that parameters representing the ther- 
mal conductivity in the calculation can be determined 
accurately by comparing the calculated surface tem- 
perature with experiment. 

In order to carry out this investigation, preliminary 
results on the temperature profile obtained by a high 
speed pyrometer [1] that sweeps the length of a tung- 
sten rod in millisecond intervals, as the rod cools, have 
been made available [2]. 

2. THEORY 

The problem is to find the temperature profile along 
a cylinder of radius a, length L0, at time t > 0 during 
Joule heating or subsequent cooling when heat loss 
occurs by conduction to the end clamps and by ther- 
mal radiation into a vacuum (hence no convective 
loss), the container being maintained at an ambient 
temperature T = To. The cylinder has total hemi- 
spherical emissivity r, thermal conductivity ~¢, thermal 
expansion ~t and heat capacity at constant pressure C, 
and an initial temperature distribution T(r, z, to) such 

that the surface temperature is TeXp(z, to) at the time 
origin t = to. 

The heat flow equation for this system is as follows 
[31: 

6C ~T(r, z, t)/Ot = (l/r) O[r~(r, z) ~T(r, z, t)/Or]/Or 

+ O[x(r, z) 0 T(r, z, t)/Oz]/dz + p(r, z ) j  2 (r, z) 

- # ( r , z ) [ j ( r , z , t ) ' V T ( r , z , t ) ]  (1) 

where C and 6, the density, are implicit functions of r 
and z through their dependence on temperature, 
p(r, z) is the electrical resistivity, j(r, z, t) is the elec- 
trical current density, and #(r,z)  is the Thomson 
coefficient. When the cylinder is cooling after the cur- 
rent has been cut off, this equation simplifies to 

6C ~T(r, z, t)/Ot = (l/r) ~[rt<(r, z) ~3T(r, z, t)/Or]/~r 

+ a[tc(r, z) OT(r, z, O/Ozl/Oz. (2) 

These equations are to be solved under the appro- 
priate initial and boundary conditions. 

On heating, the initial condition is, ideally, 
T(r, z, to) = To for all r and z. On cooling, T(r, z, to) is 
set to the experimentally observed surface tem- 
perature profile at the chosen time origin to. In prac- 
tice, this is also done on heating because the tem- 
perature at the ends of the cylinder cannot be 
maintained at To and their actual temperature is not 
measured. 

The boundary conditions are quite complex for two 
reasons: (1) the pyrometer is not accurate at tem- 
peratures below about 1500 K so a temperature is not 
recorded until some distance from the ends of the 
cylinder and (2) for a tube, there is a complicated 
pattern of radiation gain and loss at the inside surface 
which must be taken into account. In the longitudinal 
direction, a length of cylinder is chosen so that it is at 
a high enough temperature to be measured accurately 
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NOMENCLATURE 

a outer radius of rod or tube [m] 
b inner radius of tube [m] 
C heat capacity at constant pressure 

[J kg - l  K -t] 
F factor in radial boundary condition for 

tube 
G~ geometric factor in radial boundary 

condition for tube 
G ~ geometric factor in radial boundary 

condition at ends of tube 
j electrical current density [A m -2] 
L(t) length of rod between two designated 

points at time t [m] 
L0 length of rod at ambient temperature 

[m] 
N number of segments in section of rod 

selected for study 
p pixel size Ira] 
r radial position in rod or tube [m] 
t time [s] 
ti time of ith temperature profile [s] 
T(r, z, t) temperature at position (r, z) in rod 

at time t [K] 
T~Xp(z, t) surface temperature at position z 

on rod at time t [K] 
To ambient temperature [K] 
y(T/To) general polynomial representation 

of temperature dependent property 
(dimensions of property) 

y~ coefficients of y (dimensions of 
property) 

z axial position in rod [m] 
z~ axial position of ith segment of selected 

section of rod [m]. 

Greek symbols 
ct linear thermal expansion 
6 density of specimen [kg m -3] 
6 Ti radial increment in temperature for 

initial and boundary conditions 
[I4] 

6z length of segment of rod at initial 
condition [m] 

A(z, t) fractional difference between 
calculated and experimental surface 
temperature at position z, time t 

AT(z,  t) difference between calculated and 
experimental surface temperature at 
position z, time t [K] 
hemispherical total emmittance 

?~ coefficients in time dependent 
boundary conditions at ends of 
selected section of rod 
thermal conductivity [W m - l  K -t] 

Ki coefficients in polynomial 
representation of thermal 
conductivity [W m -1 K -l]  

# Thomson coefficient [f~ A K -1] 
p electrical resistivity [f~ m] 
tr Stefan-Boltzmann constant 

[W m -2 K-4]. 

Subscripts and superscripts 
exp experimental values 
i, j running indices 
o original value. 

over a selected time interval. Then, for the chosen 
length containing N segments, the boundary con- 
ditions are represented by the following quadratic 
equations in time : 

T(a,z~,t) = TeXp(gl,to)d-~)ll(t-to)+3)12(l--to) 2 (3) 

T(a, zN, t) = T exp (z~, to) + Y21 ( t -  to) + 722 ( t -  t0) 2 (4) 

where the Yu are matched to the experimental profiles 
at the chosen end points. Lacking experimental data 
for the interior of the cylinder, the temperature gradi- 
ent is assumed to have a constant value over the cross 
section at these two boundaries, i.e. 

T(r, z l , t )  = T(a, z l , t ) + f T l ( a - r ) / a  (5) 

and 

T(r, zN, t) = T(a, zN, t ) + r T y ( a - r ) / a .  (6) 

To start the calculation, 6Ti was taken to be zero 
but, subsequently, it was assumed to have a value 
consistent with the variation of temperature with r 

that was actually observed in the computed results 
close to, but away, from the end points. Values of the 
order of 10 K are typical. 

In the radial direction, for both the rod and the 
tube, the boundary condition at r = a is 

- x(r, z) c3T(r, z, t)/c3rlr=a = e(a, z)a[T4(a, z, t) -- T 4] 

(7) 

where a is the Stefan-Boltzmann constant. For  the 
rod, the symmetry condition at r = 0 is 

t~T(r, z, t)/~rl~=o = 0 (8) 

and for the tube with inner radius b, the boundary 
condition at r = b is 

x(r, z) dT(r, z, t)/arlr= b 

= e(b, z)tr IT"  (b, z, t) - TF(b' z) 10j-4-1 (9) 

where 
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j = N  

F(b,z ,)  = ~ e(b, zi)T4(b, zu, t)6zjG u 
j = l  

+ e(b, z,~) T 4 (b, gil, t)G;I q- e(b, zm) T 4 (b, z~N, t) G~N. 

z~ = z~-zj, 6z~ is the width of the element at z = z~ and 
G o and G,~ are geometric factors which depend on the 
separation between elements z~ and zj according to the 
relations 

G~ = 
[(z~ +4b2) 3/2 - z ~  - 6zub ] 

2 2 3/2 (z~j +4b ) 

' = 2F z~ + 2b 2 ] 
G / j  L-(z~ + - - ~  1/2 2"tj . 

2750 

2500 

0o) - 
W 

and ~ 22so 

l the 
the h~ 2000 

1750 
(11) 

1500 

(12) 

The factor G~ accounts for the end faces of the tube. 
Noting that the difference between the rod and the 
tube enters only in these radial boundary conditions, 
in the rest of the paper, unless specified otherwise, the 
discussion will refer to the rod. 

3., CALCULATIONS 

The temperature profile T(r,z , t)  is calculated 
directly by use of the software package for solution of 
non-linear partial differential equations, PDETWO 
[4]. Thermal expansion is taken into account in the z- 
direction only : the section of the rod under consider- 
ation, having a length L(to) measured in meters, is 
divided into N equal segments, 6z = L(to)/N, each of 
which is adjusted in size at later times according to its 
surface temperature T(a, z, t) and the linear thermal 
expansion coefficient ct(T). Although this is a small 
effect, it does result in a length contraction of a few 
pixels in the course: of the experiment. Lengths in the 
radial direction are: scaled in units of the outer radius 
a. Thermal expansion is ignored in this direction, 
partly because of the added complications it would 
involve and partly because the calculations show that 
temperature differences in the radial direction are so 
small. The temperature is scaled in units of To, the 
ambient temperature. 

3.1. Temperature dependence 
The temperature-dependent properties which are 

pertinent to the cooling situation, C, x, e and ct, are 
represented in the general form 

y(T/To)  = Yo + yl (T/To) + y2(T/To) 2 + . . .  (13) 

For C, e and ~, the coefficients Y0, y,, y2, etc. have 
been obtained by fitting to experimental data for tung- 
sten [5, 6]. The thermal conductivity coefficients x0, 
xl and x2, are to be determined by comparing the 
computed tempera~Lure profiles with those obtained 
experimentally. 

t ' u  t - 6~nti~u 

wl |11 x ~k3  endpotntn fo r  net  #1 'r "11 ?!i 
v larks endpolnts i~or set #4 

250 500 750 1000 

PIXEL NUMBER 

Fig. 1. Experimental surface temperature profiles for cooling 
rod. True temperature [KI vs pixel number at intervals of 
0.1872 s from t = 0 to t = 1.1232 s. The endpoints of the 
sections actually used for comparison with the calculations 

are indicated by symbols as indicated. 

3.2. Preparation of  experimental data for  use in analysis 
The experimental data consists of surface tem- 

peratures as a function of distance along the rod from 
near the clamped end to the center at regular time 
intervals (0.0936 s) as it cools. The other end of the 
rod is free to move as the rod contracts. Figure 1 
shows an example of a preliminary data set [2]. Here, 
true temperature profiles are plotted as a function of 
the pixel number of the pyrometer at intervals of 
0.1872 s (the alternate profiles have been omitted for 
the sake of clarity). The pixel size is 2.8325 x 10 -5 m. 

In order to obtain the initial condition and the 
boundary conditions at the ends of the chosen section 
for use in the calculations, and for ease of comparison 
between theory and experiment at later times, it is 
necessary to smooth the data. Smoothed values of 
the surface temperature T°Xp(z, t) are obtained from a 
program SMOOTH [7] which uses cubic splines to fit 
the experimental data within prescribed tolerances. 
The smoothed curve taken as the initial condition for 
cooling and its corresponding experimental data are 
shown in Fig. 2 together with a plot of the residuals 
of this fit. Similar fits to the experimental data are 
obtained at successive intervals of 0.0936 s, and it is 
these smoothed profiles which will be referred to as 
/~XP(z, t) in all that follows. 

Comparison between the calculated and exper- 
imental profiles focuses on the region of the rod most 
sensitive to the thermal conductivity where the longi- 
tudinal temperature gradient is greatest. Since the 
lower endpoint, zl, is to be held at a constant pixel 
number, at some later time the temperature at this 
point will fall into the region where TexP(zI, t) cannot 
meet the required tolerance on the fit. As can be seen 
from Fig. 1, where X marks the endpoints selected for 
the first set of profiles, this would be the case for the 
profile at t = 0.5616 s (profile No. 6). Therefore, for 
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Fig. 2. Smoothing of the experimental data. Upper curve shows smoothed curve and experimental points 
for the temperature profile chosen as time origin for set No. h Spline degree = 3, number of knots = 10. 

Lower curve shows residuals of the fit. 

this and subsequent profiles, z 1 must be moved to a 
higher pixel number. For  the data set under exam- 
ination here, it is convenient to break the time range 
into four overlapping sets of  five profiles, the fourth 
profile of  one set being the initial condit ion for the 
next set. The upper end point ZN is not  critical so 
long as it is in the region where the temperature is 
essentially constant. To clarify this discussion, the end 
points for each set are indicated in Fig. h Once the 
endpoints and number of  profiles to be included in a 
set have been decided upon, the time dependence of  
the endpoint temperatures is obtained by fitting them 
to equations (3) and (4). This can be done to better 
than 5 K- -we l l  within the scatter of  the data. 

3.3. Procedure 
The comparison between calculation and exper- 

iment is monitored by the fractional difference, 

A(z, t) = [T(a, z, t)--  TeXP(z, t)]/TeXP(a, z, t) (14) 

plotted against temperature, T(a, z, t) : monitoring the 
fractional difference makes it easier to compare the fit 
at different times and plotting against temperature 
rather than distance along the rod makes it easier to 
monitor  the situation as xo, x~ and xz are varied since 
x is a function of  T. 

First, with x~ = x2 = 0, A(z, t) is calculated for a 

range of  values of  x0 such that A(z, t) changes from 
being predominantly positive to predominantly nega- 

i K.~+ 1 tive as x0 changes from x0 to : the perfect fit 
would be A(z, t) = 0 for all z and t. This narrows the 
range of  values that x can take in the temperature 
region under consideration. Next,  x0 and x, are found 
such that x ( T ~ ) =  xg at one temperature T~ where 
A(z, t) is close to zero and x(T2) = x~ +~ at another 
such temperature T2. Small adjustments in x0 and x~ 
are made to improve the fit over the whole profile at 
all times in the set. Finally, if  addition of  a quadratic 
term in x is warranted, using A(z, t) for the best pair 
of  values (x0, x,) as a guide, adjustments made to x(T)  
at three temperatures are used to determine x0, xl and 
~c 2. Further  small adjustments of  these parameters may 
be necessary to arrive at a "best"  fit. 

4. RESULTS 

The preliminary measurements that have been 
made available for testing this method of  analysis were 
made on a cylindrical tungsten rod as it cooled [2]. 
The specifications o f  the rod are given in Table 1, 
together with the coefficients Y0, Yl, to y, that represent 
the data for C, ~ and e. All values of  x0, x~ and x2 are 
in W m-~ K -l .  The length of  rod quoted is the half  
length over which measurements were actually made 
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Table 1. Specifications for tungsten rod and parameters of polynomial fits to thermophysical property data 
(equation (13)). Units of heat capacity C [J kg -l  K -~] 

2553 

Radius Length Density 
a [m] L0 [m] 6 [kg m -3] 

1.59766e-3 0.029 19230.0 

Y Yo Yl Y2 Y3 Y4 

CJ" - 139.83 100.89 11.4817 0.49771 - -  
• :~ 1.3896e-3 - 2.4259e-4 3.4818e-4 - 3.0597e-5 1.2554e-6 
et 0.2627 8.1160e-3 - -  - -  - -  

tReference [5]. 
:~Reference [6]. 

(1024 pixels). The ambient temperature is 293 K. The 
maximum temperature for the run, at the midpoint  of  
the rod, was 2880 K. 

Fourteen temperature profiles were recorded as the 
rod cooled over a time period of  1.2168 s. It was found 
that five profiles could be taken as a set to fit the 
calculated surface temperatures without falling into 
the temperature range where there is too much scatter 
in the data, as discussed in Section 3. Thus, in accord- 
ance with the procedure described there, the initial 
condit ion for the first set (No. 1) of  five profiles is 
T~Xp(z, to), the computed profile T(r, z, t3) at the time 
corresponding to the fourth profile is the initial con- 
dition for the next set (No. 2) of  five profiles, T(r, z,/6) 
is the initial condit ion for the third set (No. 3), and 
Z(r, z, t9) is that for the last set (No. 4). To complete 
these initial conditions, as can be seen from the end 
points marked on Fig. l, extra points are added at the 
high temperature end of  the section when points are 
removed at the low temperature end. These extra 
points are taken fi'om the smoothed surface tem- 
perature profiles T~P(z, t) with t = ts, t6 and t9, respec- 
tively, and with a constant radial temperature gradient 
6 TN assumed for the interior points, as for the initial 
condit ion at t = to. The coefficients for the boundary 
conditions (equations (3) and (4) for the time depen- 
dence and equations (5) and (6) for the radial depen- 
dence) for each set of  profiles are listed in Table 2. 

Figure 3(a) shows A(z, t) plotted against T(a, z, t) 
at t = 0.2808 s, 0.3744 s, 0.4680 s, 0.5616 s and 0.6552 
s, for set No. 2. The criterion that has been used for a 
good fit is that A(z, T) should be O(10 -3) over the 
chosen length of  rod and over the chosen time period. 
This value is within the noise level of  the data ; about  
5 K. To give some idea of  the sensitivity of  the fit, 
A(z, t), calculated with the literature values of  thermal 
conductivity [8] for the same set of  profiles, No. 2, is 
shown in Fig. 3(b) : at the peak, a six-fold increase in 
A is produced by an 8% decrease in x. Note  that 
positive values of  AT  correspond to the value of  x 
being too low. 

Once the best fit has been achieved, it is more 
informative to consider the temperature difference 
itself, 

AT(z , t )  = T(a ,z , t ) -T~Xp(z , t )  (15) 

and this is what is shown in Fig. 4 at intervals of  
0.0936 s for sets Nos 1, 2, 3 and 4. Here, for ease of  
discussion, z is expressed in terms of  the pixel number. 
The peak in AT  at z = 400 for the final (lowest tem- 
perature) profile of  the run (Fig. 4(d)) is probably an 
artifact of  the smoothing process which puts knots 
at z = 380 and 422 for this profile. The four sets of  
parameters (x0, Xl, x2) for the run are listed in Table 
3. x2 is zero in all cases since the linear case already 
meets the criterion for a good fit. The parameters 

Table 2. (a) Coefficients for boundary conditions at ends of selected sections. See equations (3) and (4) : temperatures 
are scaled in units of To = 293 K 

No. TCXV(a, z,, t) 711 [s 1] 712 Is -2] T°XV(a, z~¢, t) 72~ [s-l] Y22 [s -2] 

1 9.2084 - 4.7223 0.9312 9.8191 - 1.3506 0.2539 
2 8.5084 - 3.7309 1.4284 9.4662 - 1.1875 0.1365 
3 8.11720 --2.7359 0.8038 9.1532 - 1.0877 0.1322 
4 7.8995 - 2.1185 0.4348 8.8674 -- 0.9501 - 0.0062 

(b) Coefficients for radial gradients at ends of 
selected sections. See equations (5) and (6) 

No. 3T, [K] 6TN [K] 

1 9.96 11.72 
2 9.96 13.19 
3 8.79 13.19 
4 7.33 11.72 
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Table 3. Thermal conductivity coefficients xi for tungsten rod 
[Wm -l K-'] 

No. K0 x~ K 2 

1 157.75 -6.590 -- 

2 154.00 --5.860 - -  
3 148.25 --5.123 - -  
4 148.25 --5.123 - -  

Re~ [8] 140.13 --7.977 0.314 
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Fig. 5. Thermal conductivity x vs T(K). 

obtained from the thermal conductivity values rec- 
ommended in the literature [8] are given in Table 3 
also. 

Finally, the thermal conductivity given by all sets 
of parameters, including the literature values, is shown 
in Fig. 5. The literature values lie considerably below 
the calculated values for temperatures below 2700 K, 
as one would expect from comparing A in Figs. 3(a) 
and (b). Also shown in Fig. 5, as a guide to the eye, 
are the average values of x for the four sets. The 
greatest deviation of x from the average value is at the 
highest temperatures and it is about 3% for set No. 1 
and less than 1.5% for the other sets. This is within 
the estimated accuracy of the input data (heat 
capacity • 2-3% ; thermal expansion : 1-2% ; emiss- 
ivity: 3% ; [5, 6]). The deviation of this average from 
the literature values (estimated accuracy ~5% [8]) 
goes from 5% to 11% as the temperature falls. Tests 
with several values of &TN show that the first set of 
the run (denoted by open circles) is out of line with 
the average, mainly because of the initial condition at 
t = to which imposes a constant temperature gradient 
on the interior points of the rod when only the surface 
temperature is known. At later times, the calculations 
show that 6 Ti varies; by several degrees [K] from one 
end of the rod to the other (see Table 2(b)). 

5. CONCLUSIONS 

The surface temperature profile is quite sensitive to 
the values used to represent the thermal conductivity 
in the region where there is a significant curvature in 
the profile, as one would expect from the heat transfer 
equation (equation (2)). As shown by the best fit 
values in Fig. 4, the difference between the calculated 
and experimental profiles AT can be reduced to a few 
degrees (better than 0.3%) in all cases; within the 
scatter of the temperature profile data. Although x(T) 
itself is consistent over all four sets of profiles to better 
than 3%, it is of some concern that the results are not 
in better agreement with the recommended literature 
values [8]. One factor that may be important is the 
emissivity of the rod, since radiation is a major cause 
of heat loss at these high temperatures and emissivity 
is very dependent on the condition of the emitting 
surface. The ideal situation would be to measure the 
emissivity simultaneously. As can be seen from equa- 
tion (7), the combination e/• controls the radiative 
boundary condition and dominates the heat loss in 
the horizontal portion of the temperature profile near 
the center of the rod. If the value of e is too large, the 
value needed for x will also be too large and vice versa. 
Unfortunately, with the literature values of K, the e(T) 
that would reduce the large positive value of A shown 
in Fig. 4(b) to an acceptable level, would have to be 
increased so much at the lower temperatures that it 
would have a negative slope; an unacceptable result. 
The discrepancy is therefore unresolved. 

It is also possible that the preliminary nature of the 
experimental data from a newly-developed instrument 
might contribute to the differences between the x's 
calculated from the four setsof profiles and the litera- 
ture values. 

As a result of this investigation of the cooling of a 
tungsten rod, it appears that the method developed 
here to determine the thermal conductivity from a 
comparison between calculated and experimental tem- 
perature profiles has some promise. In spite of the 
relatively small role played by thermal conduction 
in the heat transfer process compared with thermal 
radiation, the surface temperature is sensitive to the 
value of x, down to the noise level of the data. The 
question of accuracy posed in the introduction cannot 
be answered yet, owing to the preliminary nature of 
the experimental data and to uncertainty about the 
emissivity of the actual specimen, a particularly 
important factor in the heat transfer process at these 
high temperatures. It is to be hoped that this uncer- 
tainty will be removed in future experiments. 
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